3,323 research outputs found

    Pose-Normalized Image Generation for Person Re-identification

    Full text link
    Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on the pose. The model is based on a generative adversarial network (GAN) designed specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and complementary to features learned with the original images. Importantly, under the transfer learning setting, we show that our model generalizes well to any new re-id dataset without the need for collecting any training data for model fine-tuning. The model thus has the potential to make re-id model truly scalable.Comment: 10 pages, 5 figure

    Shallow U-Net Deep Learning Approach for Phase Retrieval in Propagation-Based Phase-Contrast Imaging

    Get PDF
    X-Ray Computed Tomography (CT) has revolutionised modern medical imaging. However, X-Ray CT imaging requires patients to be exposed to radiation, which can increase the risk of cancer. Therefore there exists an aim to reduce radiation doses for CT imaging without sacrificing image accuracy. This research combines phase retrieval with the ShallowU-Net CNN method to achieve the aim. This paper shows that a significant change in existing machine learning neural network algorithms could improve the X-ray phase retrieval in propagationbased phase-contrast imaging. This paper applies deep learning methods, through a variant of the existing U-Net architecture, named ShallowU-Net, to show that it is possible to perform two distance X-ray phase retrieval on composite materials by predicting a portion of the required data. ShallowU-Net is faster in training and in deployment. This method also performs data stretching and pre-processing, to reduce the numerical instability of the U-Net algorithm thereby improving the phase retrieval images

    Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production.

    Get PDF
    Catalysts with a single atom site allow highly tuning of the activity, stability, and reactivity of heterogeneous catalysts. Therefore, atomistic understanding of the pertinent mechanism is essential to simultaneously boost the intrinsic activity, site density, electron transport, and stability. Here, we report that atomically dispersed nickel (Ni) in zincblende cadmium-zinc sulfide quantum dots (ZCS QDs) delivers an efficient and durable photocatalytic performance for water splitting under sunlight. The finely tuned Ni atoms dispersed in ZCS QDs exhibit an ultrahigh photocatalytic H2 production activity of 18.87 mmol hour-1 g-1. It could be ascribed to the favorable surface engineering to achieve highly active sites of monovalent Ni(I) and the surface heterojunctions to reinforce the carrier separation owing to the suitable energy band structures, built-in electric field, and optimized surface H2 adsorption thermodynamics. This work demonstrates a synergistic regulation of the physicochemical properties of QDs for high-efficiency photocatalytic H2 production

    Influence of silencing the MC4R gene by lentivirusmediated RNA interference in bovine fibroblast cells

    Get PDF
    Melanocortin receptor 4 (MC4R) is a key element in the mechanisms used to regulate both aspects of keeping the balance between energy uptake and energy expenditure. MC4R was knocked down by lentivirus-mediated shRNA expressing plasmids, which were controlled by the U6 promoter in bovine fibroblast cells, and the expression of MC4R was examined by the real time-PCR and Western blot analysis. Real time-PCR analysis was used to characterize the expression of Leptin, POMC, AGRP, MC3R and NPY gene. The relative genes [leptin, proopiomelanocortin (POMC), agouti-related peptide (AGRP), MC3R and neuropeptide Y (NPY)] expression level seemed to be closely associated with the MC4R gene in bovine fibroblast cell lines (BFCs). The levels of both MC4R mRNA and protein were significantly reduced by RNA interference (RNAi) mediated knockdown of MC4R in BFCs cells transfected with plasmid-based MC4R-specific shRNAs. The finding of this study demonstrated that vector based siRNA expression systems were an efficient approach to the knockdown of the MC4R gene expression in bovine fibroblast cells and they provided a new molecular basis for understanding the relationship of MC4R and other genes, which were responsible for the regulation of energy homeostasis by the melanocortin system.Key words: Melanocortin receptor 4 (MC4R), RNAi, bovine fibroblast cells, energy homeostasis

    A Search for Ultra-High Energy Counterparts to Gamma-Ray Bursts

    Get PDF
    A small air shower array operating over many years has been used to search for ultra-high energy (UHE) gamma radiation (≄50\geq 50 TeV) associated with gamma-ray bursts (GRBs) detected by the BATSE instrument on the Compton Gamma-Ray Observatory (CGRO). Upper limits for a one minute interval after each burst are presented for seven GRBs located with zenith angles Ξ<20∘\theta < 20^{\circ}. A 4.3σ4.3\sigma excess over background was observed between 10 and 20 minutes following the onset of a GRB on 11 May 1991. The confidence level that this is due to a real effect and not a background fluctuation is 99.8\%. If this effect is real then cosmological models are excluded for this burst because of absorption of UHE gamma rays by the intergalactic radiation fields.Comment: 4 pages LaTeX with one postscript figure. This version does not use kluwer.sty and will allow automatic postscript generatio

    Immunomodulatory Potential of Patchouli Alcohol Isolated from Pogostemon cablin (Blanco) Benth (Lamiaceae) in Mice

    Get PDF
    Purpose: To isolate and purify patchouli alcohol (PA), a tricyclic sesquiterpene constituent of Pogostemon cablin, and investigate its immunomodulatory potential in Kunming mice.Methods: PA was prepared from an ethanol aqueous extract of P. cablin by silica gel column chromatography, and further purified by crystallization using n-hexane. Purity was assessed by analytical gas chromatography (GC) and confirmation of chemical structure performed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The effect of PA from Pogostemon cablin on immunological function was studied by macrophage phagocytosis, immune organ index, serum immunoglobulin level and delayed type  hypersensitivity (DTH) in mice that were administered orally doses of 20, 40 and 80 mg/kg.Results: The purity of PA was 99.3%. The oral administration of PA (40, or 80 mg/kg body weight) significantly increased the phagocytic index (p &lt; 0.05), compared with prednisone acetate (PR) group. Administration of PA (80 mg/kg) boosted the production of circulating serum IgM (0.081 ± 0.010) and IgG (1.296 ± 0.120), while IgM and IgG in PR group was 0.069 ± 0.011 (p &lt; 0.01) and 1.180 ± 0.070 (p &lt; 0.01) respectively. However, PA (20 mg/kg) treatment elicited significant decrease in DTH induced by 2, 4-dinitro-chlorobenzene (DNCB) in mice (1.03 ± 0.40, p &lt; 0.05), in comparison to DNCB-induced group (1.67 ± 0.84 mg).Conclusion: These results suggest that PA has significant immunomodulatory properties which probably act by activating mononuclear phagocytic system, augmenting humoral immune response while suppressing cellular immune response.Keywords: Patchouli alcohol, Pogostemon cablin, Immunomodulatory, Phagocytic index, Macrophag

    A Simple Method to Synthesize Cadmium Hydroxide Nanobelts

    Get PDF
    Cd(OH)2nanobelts have been synthesized in high yield by a convenient polyol method for the first time. XRD, XPS, FESEM, and TEM were used to characterize the product, which revealed that the product consisted of belt-like crystals about 40 nm in thickness and length up to several hundreds of micrometers. Studies found that the viscosity of the solvent has important influence on the morphology of the final products. The optical absorption spectrum indicates that the Cd(OH)2nanobelts have a direct band gap of 4.45 eV

    Novel SNPs polymorphism of bovine CACNA2D1 gene and their association with somatic cell score

    Get PDF
    Mastitis is a major cause of economic loss in dairy cattle. In this study, the bovine CACNA2D1 gene was taken as a candidate gene for mastitis resistance. The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the bovine CACNA2D1 gene and evaluate the association of these SNPs with mastitis in cattle. Through DNA sequencing and PCR-RFLP analysis, three mutations C367400T, A496561G and G519663A were detected in the cattle CACNA2D1 gene. Altogether 240 dairy cattle of three breeds (Holstein, Simmental, and Sanhe cattle) were genotyped and allele frequencies were determined. The effects of CACNA2D1 polymorphisms on somatic cell score (SCS) were analyzed and a significant association was found between G519663A and SCS. The mean of genotype GG was significantly lower than those of genotypes AG and AA. The results of this research will be useful in further studies to determine the role of the CACNA2D1 gene in mastitis resistance and further work will be necessary to investigate whether the CACNA2D1 gene play a role in defending the host from mastitis.Key words: Association analysis, CACNA2D1 gene, dairy breeds, mastitis, somatic cell score

    Cell separation using tilted-angle standing surface acoustic waves

    Get PDF
    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-”m-diameter polystyrene beads with a separation efficiency of ~99%, and separated 7.3- and 9.9-”m-polystyrene beads with an efficiency of ~97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.National Institutes of Health (U.S.) (Grant U01HL114476)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD007209-01)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-0820404
    • 

    corecore